Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 204(Pt A): 111998, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34499896

RESUMO

This study was carried out to evaluate the heavy metals (Lead (Pb), Nickel (Ni), Chromium (Cr), Copper (Cu), Cadmium (Cd) and Zinc (Zn)) pollution in the Noyyal River of South India by collecting 130 river water samples (65 each in pre- and post-monsoon). The heavy metals were measured using Atomic Absorption Spectrophotometer (AAS). The data were used to calculate the associated health hazards for the inhabitants consume river water. Correlation analyses and average concentration of heavy metals denoted that post-monsoon metal concentrations were lesser compared to the pre-monsoon due to dilution effect. Modified Contamination Degree (MCD) indicated that 45% of pre-monsoon and 25% of post-monsoon samples were classified under extremely polluted category. Heavy metal pollution index (HPI) showed that all the regions fall under highly polluted category except 'Region I' where 20% of samples were under safe category during the pre-monsoon, whereas 9%,28%, 17% and 26% of samples in Regions I, II, III and IV were highly polluted during the post-monsoon season, respectively. Ecological Risk Index (ERI) revealed that high risks attained in Regions II (78%) and III (82%) during pre-monsoon, and reduced risks found in Regions II (28%) and III (45%) during post-monsoon season due to dilution by monsoon rainfall. Non-carcinogenic risks as inferred by the Hazard Index (HI) indicated that 78% and 52% of samples for infants, 75% and 49% of samples for teens and 71% and 45% of samples for adults exceeded the threshold limits of USEPA (HI > 1) and possessed risks during pre- and post-monsoon, respectively. The cancer risk assessment based on ingestion of heavy metals indicated that the order of risk is Ni > Cr > Cu. The HI for infants and teens was notably high to that of adults in both the seasons. This study will be useful to develop effective strategies for improving river water quality and to reduce human health hazards.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Adolescente , Adulto , Monitoramento Ambiental , Humanos , Índia , Metais Pesados/análise , Medição de Risco , Rios , Estações do Ano , Poluentes Químicos da Água/análise , Qualidade da Água
2.
J Hazard Mater ; 416: 125909, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492843

RESUMO

Twenty-two water samples from the Thirumanimuthar River course in southern India were collected before COVID-19 lockdown and during COVID-19 lockdown periods and were analyzed for microbiological parameters (fecal coliform bacteria, total coliform bacteria, Escherichia coli, and fecal streptococci) and heavy metals (Fe, Mn, Zn, Cu, Cd, Ni, Pb and Cr). The lockdown has decreased microbial populations and heavy metals. Fe, Cu, Cd, Ni, Pb and Cr exceeded the drinking water limits, respectively, in 77%, 45%, 27%, 18%, 9% and 91% of the pre-lockdown samples. During the lockdown period, Fe, Cu and Cd concentrations in 23% and Cr in 50% of the samples exceeded the limits. Heavy Metal Pollution Index (PI) expressed that 27%, 64% and 9% of the pre-lockdown samples represented 'low', 'medium' and 'high' pollution categories, respectively, but 68% and 32% of the lockdown period samples represented 'low' and 'medium' categories, respectively. The Metal Index (MI) exposed that all samples of pre-lockdown were under the seriously affected category, whereas 54% and 46% of lockdown samples were under strongly and seriously affected categories, respectively. Health risk evaluation predicted that 95%, 91% and 86% of pre-lockdown samples and 45%, 36% and 33% of lockdown period samples were at risk among children, teenagers and adults, respectively. As there is no integrated study on river water quality of COVID-19 lockdown this work is uniquely carried out by combining heavy metal pollution, microbial contamination and human health risk evaluation.


Assuntos
COVID-19 , Metais Pesados , Poluentes Químicos da Água , Adolescente , Adulto , Criança , China , Controle de Doenças Transmissíveis , Monitoramento Ambiental , Sedimentos Geológicos , Humanos , Índia , Metais Pesados/análise , Metais Pesados/toxicidade , Pandemias , Medição de Risco , Rios , SARS-CoV-2 , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
3.
Environ Res ; 200: 111726, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34302824

RESUMO

In the present study, we used a variance decomposition based global sensitivity index to evaluate the sensitivity of input variables and their contribution for non-carcinogenic health risks via intake and dermal pathways. Groundwater samples were collected from an industrial sector (Tiruppur region) of south India during the month of January 2020. These samples were analysed for nitrate, which varied from 10 to 290 mg L-1 having the mean of 87 mg L-1. Nearly 58% of the samples surpassed the permissible limit (45 mg L-1) defined by the World Health Organization. Total hazard index (THI) ranged from 0.29 to 8.52 for children, 0.28 to 8.26 for women, and 0.24 to 6.99 for men. The first-order effect (FOE) and second-order effect (SOE) were derived for the three different age groups using Sobol sensitivity approach. The FOE scores showed that nitrate concentration in groundwater is the most sensitive parameter followed by exposure frequency for children, men and women via oral pathway. The SOE scores showed that nitrate concentration along with ingestion rate had greater sensitiveness in the oral input model. The higher SOE was obtained for the interaction of nitrate with skin surface area for children via dermal pathway, but it was not significant for women and men. These results suggest that epidemiology due to nitrate risk should be studied taking into account of concentration of nitrate, exposure frequency, fraction of contact and body weight. Additionally, ingestion rate and skin surface area were considered for the assessment of health risks for children.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Criança , Monitoramento Ambiental , Feminino , Humanos , Índia , Masculino , Nitratos/análise , Nitratos/toxicidade , Medição de Risco , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
4.
Environ Res ; 199: 111238, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34015295

RESUMO

The present investigation was conducted to find the possible chromium contamination in groundwater and the related health risks in a leather industrial region of south India using Sobol sensitivity modeling. Thirty-five groundwater samples were sampled from the field sites and were analyzed for pH, TDS (Total Dissolved Solids), EC (Electrical Conductivity), F- (Fluoride), NO3- (Nitrate) and Cr (Chromium). The concentration of nitrate varied from 3 to 81 mg/L with a mean of 48.6 mg/L. About 57% (n = 20) of the wells surpassed the drinkable limit (45 mg/L) for NO3- as per World Health Organization (WHO). The fluoride ion ranged from 0.1 to 2.7 mg/L with a mean of 1.5 mg/L. Around 51% (n = 18) of the samples crossed the recommended limit of WHO for F- (1.5 mg/L). The chromium varied from 0.01 to 0.19 mg/L in groundwater with a mean of 0.1 mg/L. About 66% (n = 23) of the samples overshoot the permissible limit of WHO standards (0.05 mg/L) for Cr. The spatial distribution map of chromium in the groundwater showed that 271.76 km2 area is under risk. Based on total hazard index (THI), 66%, 46%, and 43% of the groundwater samples surpassed the allowable limit (THI > 1) for children, women and men, correspondingly. Children pose severe health risks than women and men in this region. Using Sobol sensitivity indices, three different categories of risk effects were assessed: first order effect (FOE), total effect (TE) and second order effect (SOE). In the oral sensitivity model, concentration of Cr (Cw) in water and ingestion rate (IR) had the dominant role, whereas in the dermal model, skin surface area (SA) and contact fraction by skin (F) had vital role in addition to the concentration (Cw). Further, the outcome of this study insists the responsibilities of industrial, municipal and agricultural sectors to keep the environment pollution free and to ensure the supply of potable water to the people.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Criança , Cromo/análise , Cromo/toxicidade , Monitoramento Ambiental , Feminino , Humanos , Índia , Masculino , Medição de Risco , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
5.
Arch Environ Contam Toxicol ; 80(1): 259-276, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33398395

RESUMO

Samples of groundwater were collected during a post-monsoon period (January) and a pre-monsoon period (May) in 2020 from 30 locations in the rapidly developing industrial and residential area of the Coimbatore region in southern India. These sampling periods coincided with times before and during the lockdown in industrial activity and reduced agricultural activity that occurred in the region due to the COVID-19 pandemic. This provided a unique opportunity to evaluate the effects of reduced anthropogenic activity on groundwater quality. Approximately 17% of the wells affected by high fluoride concentrations in the post-monsoon period returned to levels suitable for human consumption in samples collected in the pre-monsoon period. This was probably due to ion exchange processes, infiltration of rainwater during the seasonal monsoon that diluted concentrations of ions including geogenic fluoride, as well as a reduction in anthropogenic inputs during the lockdown. The total hazard index for fluoride in the post-monsoon samples calculated for children, adult women, and adult men indicated that 73%, 60%, and 50% of the groundwater samples, respectively, had fluoride levels higher than the permissible limit. In this study, nitrate pollution declined by 33.4% by the pre-monsoon period relative to the post-monsoon period. The chemical facies of groundwater reverted from the Na-HCO3-Cl and Na-Cl to the Ca-HCO3 type in pre-monsoon samples. Various geogenic indicators like molar ratios, inter-ionic relations along with graphical tools demonstrated that plagioclase mineral weathering, carbonate dissolution, reverse ion exchange, and anthropogenic inputs are influencing the groundwater chemistry of this region. These findings were further supported by the saturation index assessed for the post- and pre-monsoon samples. COVID-19 lockdown considerably reduced groundwater pollution by Na+, K+, Cl-, NO3¯, and F- ions due to shutdown of industries and reduced agricultural activities. Further groundwater quality improvement during lockdown period there is evidence that the COVID-19 lockdown by increased HCO3¯ ion concentration. Overall results illustrate the positive benefits to groundwater quality that could occur as a result of measures to control anthropogenic inputs of pollutants.


Assuntos
COVID-19 , Água Subterrânea/química , Quarentena , Estações do Ano , Poluentes Químicos da Água/efeitos adversos , Poluentes Químicos da Água/análise , Poluição Química da Água/efeitos adversos , Adulto , Fatores Etários , Agricultura , Criança , Controle de Doenças Transmissíveis , Monitoramento Ambiental , Feminino , Fluoretos/análise , Humanos , Índia , Indústrias , Masculino , Nitratos/análise , Pandemias , Medição de Risco , Fatores Sexuais
6.
Environ Sci Pollut Res Int ; 28(15): 18523-18538, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32939651

RESUMO

This study used geochemical modeling to understand the chemical evolution of groundwater, entropy water quality index to assess the aptness of groundwater for human consumption, and total hazard index to determine the possible non-carcinogenic risks among children, women, and men in an urban-industrial area (Tiruppur region) of southern India. For the above purposes, 40 groundwater samples were collected from tube and dug wells, and they were tested for various physicochemical parameters. Fluoride and nitrate levels ranged from 0.10 to 2.70 mg/l and 10 to 290 mg/l, respectively. Nearly, 50% of the fluoride samples and 58% of the nitrate samples exceeded the WHO limits of 1.5 and 45 mg/l, respectively. The majority of the groundwater samples (22.5%) represented Ca2+-Na+-Cl- water type while the remaining samples exhibited mixed water types. Approximately, 85% of the samples indicated high levels of salinization since they had Revelle index > 0.5 meq/l. The saturation index (SI) revealed that mineral weathering; dissolution of halite, gypsum, and anhydrite; and precipitation of calcite and dolomite contributed to groundwater chemistry. Based on the entropy water quality index (EWQI), none of the groundwater samples was characterized as excellent or good water quality while 57.5% of the samples had medium water quality, and 32.5% and 10% of the samples exhibited poor and extremely poor water qualities, respectively. The last two categories are designated as unfit for consumption. The cumulative health risk (nitrate and fluoride together) ranged from 0.97 to 11.16 for children, 0.60 to 10.54 for women, and 0.39 to 6.92 for men. These values represent health risks among 88%, 80%, and 73% of the groundwater samples for children, women, and men, respectively. Therefore, proper measures should to be done to reduce the health risks associated with high nitrate and fluoride in the groundwater of the study area, which is used for drinking purposes.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Criança , Ingestão de Alimentos , Entropia , Monitoramento Ambiental , Feminino , Humanos , Índia , Masculino , Poluentes Químicos da Água/análise , Qualidade da Água
7.
Environ Nanotechnol Monit Manag ; 16: 100472, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36568583

RESUMO

In this investigation, the positive impact of COVID-19 lockdown on heavy metals concentration and biological parameters in the shallow groundwater samples of Coimbatore city of South India was ascertained. The groundwater samples (n=15) were obtained from shallow open wells during before lockdown (24-25 February 2020) and after lockdown (2-3 June 2020) periods. These samples were analysed for heavy metals (Fe, Mn, Ni, Cr and Pb) and biological parameters (E. coli, Fecal coliforms, Fecal streptococci and Total coliforms). Fe concentration was within the permissible limit but, the concentrations of Mn, Ni, Cr and Pb were above the allowable limits for drinking uses as per the WHO. However, after lockdown the number of samples crossing the cutoff limit had considerably decreased (Mn: from 2 to 0 mg/L; Ni: from 13 to 10 mg/L; Cr: 7 to 5 mg/L and Pb: from 13 to 8 mg/L). The heavy metal pollution index (HPI) revealed that 176.75 km2 (67.4%) and 85.35 km2 (32.6%) areas fell under unsuitable and very poor categories, respectively, during the pre-lockdown period, whereas 138.23 km2 (52.6%), 118.98 km2 (45.3%) and 4.89 km2 (2.1%) areas fell under very poor, poor and good categories, respectively, during the post-lockdown period. Similarly, Total coliform, Fecal coliform and E. coli had decreased distinctly due to the pandemic lockdown. Therefore, the shutdown of small and large-scale industries during the lockdown period had improved the groundwater quality. The health risk assessment showed that 93%, 87% and 80% of pre-lockdown samples, and 87%, 80% and 73% of post-lockdown samples possessed non-carcinogenic risks (HI > 1) for children, female and male categories, respectively.

8.
Environ Geochem Health ; 43(2): 1009-1028, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32719980

RESUMO

The main aim of the present study was to examine the quality of the groundwater and decipher the sources of groundwater fluoride through mass balance modeling based on fluoride exposure in a geologically heterogeneous semi-arid region of southern India. This was achieved by hydrogeochemical analysis, graphical methods, and mass transfer modeling approaches. Fuzzy comprehensive technique was applied to evaluate the quality of groundwater for groundwater management. In this regard, 61 groundwater samples were obtained from open wells and bore wells and analyzed for different physicochemical parameters. The major cation and anion abundances follow the order Na+ > Ca2+ > Mg2+ > K+ and Cl- > HCO3- > SO42- > NO3- > PO43-. About 88.4% and 34.4% of the total water samples were dominated with Na+ and Cl- ions in this region, respectively. The fluoride level in groundwater ranged from 0.10 to 3.30 mg/l with a mean value of 1.04 mg/l. Nearly 25% of the groundwater samples collected from 15 villages showed fluoride concentrations exceeding the maximum permissible limit of 1.5 mg/l as per the World Health Organization recommendations for human intake. More than 85% of the samples fell under strong acid (Cl- and SO42-) type. The amount of groundwater salinization in this region was 70.5% since the Revelle index (RI) was excess in the groundwater samples (RI > 0.5 meq/l). Silicate weathering, cation exchange, and gypsum dissolution were the dominant geogenic processes in the aquifer system influencing groundwater chemistry and nullified the possibility of carbonate dissolution. Saturation indices revealed the contribution of sequestration of CaCO3 in F- enrichment. Total dissolved solids showed strong positive correlations with Na+, Ca2+, Mg2+, Cl-, SO42- and NO3- indicating the contribution of anthropogenic inputs to groundwater chemistry in addition to geogenic sources. The results of the fuzzy comprehensive method indicated that 33% of the groundwater samples fell under fair water type, 2% and 11% of the samples fell under poor and very poor quality water types, respectively. Therefore, this work will be helpful for the decision-makers to plan for the sustainable management of groundwater resources.


Assuntos
Água Subterrânea/química , Modelos Teóricos , Monitoramento Ambiental , Fluoretos/análise , Fluoretos/normas , Fenômenos Geológicos , Água Subterrânea/normas , Humanos , Índia , Íons/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/normas , Qualidade da Água
9.
Environ Sci Pollut Res Int ; 28(15): 18423-18435, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32279251

RESUMO

A study was conducted to evaluate the suitability of groundwater in the drought-prone Shanmuganadhi River basin of south India for best agricultural practices since the surface water that exists in this basin is not sufficient to meet out the demand. As the quality of groundwater is not uniform in the hard rock aquifers of this basin, the work was carried out to demarcate the suitable groundwater quality zones for the agricultural activities. Sixty-one groundwater samples were collected and analyzed for various parameters such as electrical conductivity (EC), pH, TDS, major cations (Ca2+, Mg2+, Na+, and K+) and anions (Cl-, SO42-, HCO3-, PO43-, NO3-, and F-). To demarcate the feasible zones for agricultural practices, irrigation water quality parameters like EC, sodium adsorption ratio (SAR), percent sodium (Na %), residual sodium carbonate (RSC), magnesium hazard ratio (MHR), Kelly's ratio (KR), and permeability index (PI) were computed. Furthermore, the irrigation water quality representation diagrams like USSL, Wilcox, and Doneen were prepared, and their outputs were spatially plotted using the Geographical Information System (GIS) to identify the suitability domains of groundwater for irrigational practices. Interpretation of irrigation water quality parameters and diagrams indicate that 2% of groundwater samples represented "low" salinity, 26% of samples represented "medium" salinity, 66% of samples represented "high" salinity, and 6% of samples represented "very high" salinity. Similarly, about 59% of samples represented the low alkaline/sodium category and 41% of them represented the medium alkaline category. The USSL output shows that about 2% of samples of the basin signified "low salinity with low alkalinity" category (C1S1), 28% of samples signified the "medium salinity with low alkalinity" category (C2S1), 33% of samples signified "high salinity with low alkalinity" category (C3S1), 28% of samples signified the "high salinity with medium alkalinity" category (C3S2), and 10% of samples signified the "very high salinity with medium alkalinity" category (C4S2). Groundwater is suitable for irrigation in 277.52 km2 area of the basin. It is moderately suitable in an area of 318.46 km2 and poorly suitable over 38.64 km2. This study recommends that groundwater with moderate suitability could only be used for irrigating permeable soils and for cultivating salt-tolerant crops. The addition of gypsum to soil might be helpful to increase the infiltration capacity and osmotic activity. However, poorly suitable area should be avoided for agricultural practices.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Secas , Monitoramento Ambiental , Sistemas de Informação Geográfica , Índia , Rios , Poluentes Químicos da Água/análise , Qualidade da Água , Abastecimento de Água
11.
Environ Geochem Health ; 43(2): 931-948, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32557129

RESUMO

The aim of the study is to address the issues and associated health risks due to consumption of high-fluoride water supplied for drinking in a rural part of Shanmuganadhi River basin, Tamil Nadu, India. In this study, 61 groundwater samples were gathered from various tube and open wells and analysed for fluoride and other physicochemical parameters. The abundance of cations is Na+ > Ca2+ > Mg2+ > K+, and that of anions is HCO3- > SO42- > Cl- > F-. The fluoride concentration in drinking groundwater varied from 0.10 to 3.3 mg/l. According to the WHO standards, about 26% of the samples were unfit for drinking requirements (16 out of 61 samples) Water quality index (WQI) method was adopted to categorize the water into different classes to understand its suitability for drinking requirements. WQI signified that nearly 52% of the samples denoted poor, very poor and not suitable categories, whereas 48% of samples denoted good and excellent categories for consumption. Health risks associated with high-fluoride drinking water were assessed for various age groups of inhabitants such as children, teens and adults. The hazard quotient estimated based on the oral intake ranged from 0.00E+00 to 5.50E+00, from 0.00E+00 to 4.22E+00 and from 0.00E+00 to 3.45E+00 for children, teens and adults, respectively. It suggested that the health risks are associated with 75%, 59% and 43% of samples, respectively, among children, teens and adults. Therefore, children are more inclined towards risk than teens and adults in this region based on the intake of fluoride-rich drinking water. To improve the present scenario, groundwater should be either treated before drinking water supply or must be artificially recharged to lower the concentration of ions.


Assuntos
Exposição Dietética/análise , Água Potável/química , Água Subterrânea/química , Poluentes Químicos da Água/análise , Qualidade da Água/normas , Adolescente , Adulto , Criança , Exposição Dietética/normas , Fluoretos/análise , Fluoretos/normas , Humanos , Índia , Íons/análise , Íons/normas , Medição de Risco , Rios , Poluentes Químicos da Água/normas
12.
Chemosphere ; 265: 129083, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33280842

RESUMO

The present research was attempted to examine the human health risks due to nitrate contamination in the groundwater of Texvalley (Tiruppur region) of southern India. Groundwater samples (n = 40) were picked up from open wells (shallow aquifer) and tube wells (deep aquifer) during January 2020, and laboratory examination was conducted for various major physicochemical constituents. Nitrate concentration varied from 10 to 290 mg/l with a mean of 83.45 mg/l. About 58% (n = 23) of the wells exceeded the recommended limit (>45 mg/l) of World Health Organisation, which spread over an area of 335.16 km2. Among this, 45% of the samples (n = 18) represented shallow aquifers (depth < 15 m), and 13% of them (n = 5) represented deep aquifers (depth > 15 m). Synthetic fertilizers, cow dung and sheep manure, industrial discharge, septic tank leakage and municipal solid waste disposal are the major sources of nitrate pollution in this region. The USEPA health risk assessment model was applied in this study to assess hazard quotients (HQ) according to the NO3- exposure in various age groups of inhabitants through two different pathways such as drinking (HQoral) and skin contact (HQdermal). Eventually, total hazard index (THI) was obtained for all the groundwater samples for different age groups. According to THI, 87%, 78%, 66%, 60%, 56% and 48% of the samples contain health risks (THI >1) for infants, kids, children, teens, adults and aged people, respectively. The study finally recommended seven environmental friendly actions for the groundwater quality improvements and for the sustainable health management.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Adulto , Idoso , Animais , Monitoramento Ambiental , Humanos , Índia , Nitratos/análise , Melhoria de Qualidade , Ovinos , Poluentes Químicos da Água/análise
13.
Ecotoxicol Environ Saf ; 204: 111071, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32784015

RESUMO

The main objective of the study is to assess the groundwater quality based on water quality index and health threats associated with fluoride contamination in the Tiruppur region of southern India. Totally 40 groundwater samples were collected and analyzed for various physicochemical parameters such as pH, EC, TDS, Ca2+, Mg2+, Na+, K+, Cl-, HCO3-, SO42-, NO3- and F-. The dominance of major cations and anions conforms to the following order Ca2+> Na+> K+> Mg2+ and Cl- > HCO3- > SO42-> NO3- > F-, respectively. About 48% of the groundwater samples indicated Ca-Mg-Cl water type in the Piper trilinear diagram. The Gibbs plot indicated that all the water samples fell under rock dominance. Water quality index (WQI) results showed that 22.5, 75 and 2.5% of the samples represented good, poor and very poor quality water types, respectively. The fluoride ions in groundwater of this region ranged from 0.1 to 2.70 mg/L with a mean of 1.33 mg/L. About 50% of the groundwater samples experienced fluoride concentration exceeding the permissible limit of 1.5 mg/l. Hazard quotient (HQ) and total hazard index (THI) were computed based on the United States Environmental Protection Agency (USEPA) guidelines to evaluate the health threats for infants, children, teens, women and men. The THI ranged from 0.14 to 3.76, 0.11 to 3.01, 0.07 to 1.93, 0.06 to 1.64 and 0.06 to 1.50 for infants, children, teens, women and men, respectively. The percentages of risks in terms of THI were respectively 78, 75, 55, 33 and 23% for infants, children, teens, women and men respectively. The health risk assessment indicated that infants are most vulnerable to fluoride intake in this region. Therefore, proper treatment should be done by the government organizations to provide safe groundwater for the inhabitants.


Assuntos
Monitoramento Ambiental/métodos , Fluoretos/análise , Água Subterrânea/química , Indústria Têxtil , Poluentes Químicos da Água/análise , Qualidade da Água/normas , Adolescente , Criança , Humanos , Índia , Lactente , Medição de Risco
14.
Ecotoxicol Environ Saf ; 194: 110438, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32171120

RESUMO

The main objective of the present investigation is appraisal of human health hazard based on the intake and dermal contact of fluoride enriched potable groundwater used for rural water supply in a semi-arid region (Shanmuganadhi River basin) of south India. A variance decomposition based Sobol sensitivity method was used to assess the relative contribution as well as interaction of input variables for both oral and dermal models. Three different scores were evaluated: FOE (first order effect), SOE (second order effect) and TE (total effect) for different age groups of population including gender (kids, women and men). The spatio-temporal mapping indicates that about 26% of water supply wells exceeded the recommended limit (WHO) of fluoride (>1.5 mg l-1) for safe intake. These wells spread over 104.03 km2 area consisting 16 villages in the basin. To assess the human health risk related to fluoride enrichment in potable water, hazard index (HI) was calculated as per USEPA guidelines. The non-carcinogenic risk based on oral intake ranges from 0 to 1.81, from 0 to 1.59 and from 0 to 1.29 for kids, women and men respectively. Nearly 30%, 21% and 12% of well samples exceeded the upper permissible limit (HI > 1) for kids, women and men respectively. The Sobol sensitivity analysis reveals that, Cw (concentration of F- in water) and IR (intake rate) combination plays a vital role in the HQ oral model for the appraisal of health hazard in kids. However, these two parameters have negligible effect on health hazard for adult population (men and women). Therefore, lower age group people especially kids have significant ill effect due to the consumption of fluoride enriched potable water. The model output suggests that body weight (BW) has least effect on health hazard in the lower age group of population. Interestingly 'exposure frequency (EF)' and 'body weight (BW)' have not much effect on health hazards related to dermal contact, and 'skin surface area (SA)' has minimal effect for men (TE = 0.92) and women (TE = 1.26). However, 'SA' has vital effect for kids (TE = 17.39). Because of this, older age group people have more dermal risk than the younger people. Therefore, the HQ dermal results indicate that 49%, 64% and 67% of samples possess non-carcinogenic risk to the kids, women and men respectively.


Assuntos
Exposição Ambiental/estatística & dados numéricos , Fluoretos/análise , Indicadores Básicos de Saúde , Poluentes Químicos da Água/análise , Poluição da Água/estatística & dados numéricos , Adulto , Criança , Exposição Dietética/estatística & dados numéricos , Água Potável/análise , Monitoramento Ambiental/métodos , Feminino , Água Subterrânea/química , Humanos , Índia , Masculino , Minerais/análise , Medição de Risco , Rios , Abastecimento de Água/estatística & dados numéricos
15.
Environ Monit Assess ; 192(2): 102, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31915929

RESUMO

Groundwater quality investigations were carried out in one of the urban parts of south India for fluoride and nitrate contaminations, with special focus on human health risk assessment for the rapidly growing and increasingly industrialized Coimbatore City. Twenty-five groundwater samples were collected and analyzed for physico-chemical parameters (EC, pH, TDS, Ca2+, Mg2+, Na+, K+, Cl-, SO42-, HCO3-, PO43-, NO3-, and F-) and the piper diagram characterized 60% of them as Ca-Mg-Cl type. Analysis of fluoride (0.1 to 2.4 mg/l) shows that 32% of the groundwater samples contain F- over the permissible limit, affecting a region of 122.10 km2. Nitrate (0.1 to 148 mg/l) is over the permissible limit in 44% of the groundwater samples spread over an area of 429.43 km2. The total hazard indices (THI) of non-carcinogenic risk for children (0.21 to 4.83), women (0.14 to 3.35), and men (0.12 to 2.90) shows some of the THI values are above the permissible limit of the US Environmental Protection Agency. The THI-based non-carcinogenic risks are 60%, 52%, and 48% for children, women, and men. This investigation suggests higher health risk for children and also recommends that proper management plan should be adopted to improve the drinking water quality in this region in order to avoid major health issues in the near future.


Assuntos
Fluoretos/análise , Água Subterrânea/química , Nitratos/análise , Poluentes Químicos da Água/análise , Água Potável/normas , Monitoramento Ambiental , Fluoretos/normas , Humanos , Índia , Nitratos/normas , Óxidos de Nitrogênio/análise , Sódio/análise , Poluentes Químicos da Água/normas
16.
Environ Geochem Health ; 42(7): 1937-1963, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31705400

RESUMO

In order to assess the geochemical mechanism liable for fluoride contamination in groundwater and its health effects on the people of the Shanmuganadhi River basin, Tamil Nadu, India, 61 groundwater samples were collected during post- and pre-monsoon seasons from the wells used for drinking purposes. Collected samples were analysed for various physico-chemical parameters. The parameters estimated in the present study are hydrogen ion concentration (pH), total dissolved solids, electrical conductivity, calcium (Ca2+), magnesium (Mg2+), sodium (Na+), potassium (K+), bicarbonate (HCO3-), chloride (Cl-), sulphate (SO42-), nitrate (NO3-), phosphate (PO43-) and fluoride (F-). The fluoride ion concentration in the groundwater samples of this region varied from 0.01 to 2.50 mg/l and 0.01 to 3.30 mg/l during post- and pre-monsoon seasons, respectively. Out of 61 groundwater samples, 14 samples of post-monsoon season and 16 samples of pre-monsoon season represented high, very high and extremely high classes of fluoride, which cause dental fluorosis in this region. The fluoride-bearing minerals in the granitic and gneissic rocks such as apatite, hornblende, muscovite, biotite and amphiboles are the major sources for fluoride contamination in this area. In addition to the geogenic sources, applications of synthetic fertilizers in the agricultural fields also contribute significant amount of fluoride ions to groundwater. The spatial distribution of fluoride in different geological formations clearly indicate that the wells located in charnockite terrain were possessing very low fluoride concentration when compare with the wells located in the hornblende-biotite gneiss formation. Therefore, dental fluorosis risks are mostly associated with rock types in this region. People living over the basement rock comprising of hornblende-biotite gneiss are prone for fluorosis. Fluoride exhibited good positive correlation with bicarbonate in groundwater. As fluoridated endemic regions normally acquire lot of bicarbonate in groundwater samples, Shanmuganadhi basin falls under fluoride endemic category. The present study identified 26 villages in Shanmuganadhi basin as probable fluorosis risk areas where attention should be given to treat the fluoride-rich groundwater before drinking water supply. The groundwater level fluctuation study also designates that rise in water level reduces the concentration of fluoride due to dilution mechanism. Therefore, recharge of groundwater by artificial methods will definitely improve the present scenario.


Assuntos
Fluoretos/análise , Água Subterrânea/análise , Água Subterrânea/química , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Flúor/análise , Humanos , Concentração de Íons de Hidrogênio , Índia , Magnésio/análise , Nitratos/análise , Fosfatos/análise , Medição de Risco , Rios , Sulfatos/análise , Poços de Água
17.
RSC Adv ; 10(8): 4840-4859, 2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35693695

RESUMO

This study attempts to establish the effects of subsurface geochemical processes based on the hydrogeochemical attributes of 61 well samples collected in a semi-arid region of South India. The study also provides the health risks associated with the consumption of fluoride-enriched groundwater by the rural people since groundwater is the major source of water supply in the Shanmuganadhi River basin. In this work, water-rock interaction diagrams, an entropy-weighted water quality index (EWQI), and health risk models as per the United States Environmental Protection Agency (USEPA) were prepared to understand the geochemical mechanism behind the groundwater chemistry and its role in impacting health. About 72% of these samples are of mixed Ca2+-Mg2+-Cl- water type, representing a transition from freshwater to brackish water, and 36% of them have fluoride above the permissible limit (>1.5 mg l-1). An evaluation of the hydrogeochemical attributes suggests that silicate weathering, carbonate dissolution and reverse ion exchange mostly control the hydrochemistry of the groundwater. The EWQI characterizes about 30% of these samples as unsuitable for drinking and another 49% as of moderate quality. Human health risks were evaluated by dividing the population into seven different age groups and estimating the hazard quotient (HQ) and total hazard index (THI) from intake and dermal contact with fluoride-rich groundwater. The groundwater of this region poses a higher risk for the younger population compared to the adults. About 79% of these groundwater samples pose a health risk to 5-12 month-old infants and only 36% of the samples could be potentially hazardous for adults >23 years old. Our results suggest that the ADDdermal pathway indicates less risk compared to the ADDintake estimations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...